个人简介:
长聘教授,博导,新奥门31999“逸仙学者计划”杰出学者。本科毕业于中国地质大学(北京),博士毕业于中国科学院海洋研究所,曾在美国加州大学(圣芭芭拉)访问学习。2019年入选国家第四批“WR计划”科技创新领军人才、2018年入选科技部创新人才推进计划、2015年获得国家基金委优秀青年科学基金。主持国家重点研发计划、国家自然科学基金等多项科研项目,第一/通讯作者论文发表在 Nature Geoscience、EPSL、GCA、JGR-SE等国际地学权威刊物。
招生专业:海洋科学、海洋地质学。
欢迎博士后合作研究和专职科研系列岗位申请(长期有效)。
欢迎有兴趣从事大洋/海底岩石学与地球化学、高温高压实验模拟研究的同学报考研究生。
主要研究方向/成果介绍:
从事海洋地质学研究,主要通过现代大洋/海盆岩石学、地球化学、年代学及高温高压实验模拟等方法,研究方向包括:大洋/边缘海盆扩张动力过程及海底物质组成演化、海底风化及水-岩界面过程、现代大洋俯冲带形成与演化、板块俯冲引起的地表与深部物质交换过程、海山成因及壳幔物质循环,以及海洋地质过程中深部挥发分(C-H-F-Cl)循环。
代表性成果介绍:
(1)发现碳酸盐化岩浆向碱性玄武岩转化的现象,揭示了岩石圈厚度对深部CO2向地表释放的控制作用,成果发表在Nature Geoscience、GCA等期刊,得到广泛引用和认可。
(2)揭示了中国南海软流圈具有“印度洋型”化学组成属性,发现南海东、西两个次海盆火山岩具有明显不同的地球化学组成,反映了南海海底扩张过程中混入外来物质比例的差异,成果发表在EPSL、G-cubed,入选2018年度“中国十大海洋科技进展”。
(3)通过一系列岩石地球化学和年代学研究,在西太平洋发现一个卡洛琳洋底高原(Caroline Plateau),验证其形成于中等规模的地幔柱,并对马里亚纳/雅浦岛弧构造演化产生重要影响,成果获得山东省自然科学奖(二等奖)。
工作经历:
2024~今:新奥门31999新奥门31999,长聘教授
2016~2017:美国加州大学(圣芭芭拉),地球科学学院,访问学者
2015~2024:中国科学院海洋研究所,研究员
2012~2014:中国科学院海洋研究所,副研究员
2010~2011:中国科学院海洋研究所,助理研究员
承担主要科研项目(Research Project):
1. 国家重点研发计划项目,大洋板块俯冲背景下地幔过渡带挥发分的汇聚与释放,2025.01-2029.12,1975万元,主持(项目首席科学家),在研;
2. 国家重点研发计划项目“板块俯冲机制与大地幔楔形成”-专题,俯冲板块与弧后盆地地幔的相互作用机制,2023.01-2027.12,150万元,主持,在研;
3. 国家自然科学基金-重大研究计划(重点项目),西太平洋板块俯冲体系岩浆过程中深部碳循环研究,2019.01-2022.12,258万元,主持,已结题(结题评估“优秀”);
4. 国家自然科学基金—优秀青年科学基金,海洋岩石学与地幔地球化学,2016.01-2018.12,150万元,主持,已结题;
5. 国家自然科学基金(面上)项目,深部碳循环对典型大洋海山链碱性玄武岩的成因制约,2019.01-2022.12,65万元,主持,已结题;
6. 国家自然科学基金(面上)项目,太平洋洋中脊大尺度地幔组成不连续转换带的地球化学制约,2014.01-2017.12,78万元,主持,已结题;
7. 国家自然科学基金(面上)项目,南太平洋白垩纪以来洋中脊岩浆地幔源区温度与组成变化, 2012.01-2015.12,75万元,主持,已结题;
8. 中国科学院战略科技先导专项(A)—课题,板块俯冲体系的界面过程及其塑造的生命环境,2019.01-2024.12,997万元,主持,已结题;
9. 中国科学院战略科技先导专项(B)—子课题,印太交汇区海盆岩浆过程与地幔组成,2020.01-2024.12,150万元,主持,已结题;
10. 海洋科学与技术国家实验室“鳌山人才”计划—优秀青年学者项目,海洋岩石地球化学,2016.01-2018.12,150万元,主持,已结题。
获奖/荣誉/学术兼职:
1. 2024年:成果“西太平洋边缘海盆构造岩浆作用与深部碳循环”,获得山东省自然科学奖(二等奖)(排名第一);
2. 2022年:获得第十二届山东省青年科技奖;
3. 2021年:成果“热带西太平洋典型地质过程与环境演变”,获得海洋科学技术奖(一等奖)(排名第三);
4. 2019年:主导研究成果“首次揭示南海扩张期软流圈地幔组成本质”,入选“2018年度中国十大海洋科技进展”;
5. 2010年:获得中国科学院院长优秀奖;
6. 2020-2024:国际大洋发现计划(IODP)科学计划评估组(SEP),评审委员;
7. 2022~今:中国矿物岩石地球化学学会-地幔矿物岩石地球化学专业委员会,委员;
8. 2018-2026:国家自然科学基金委“西太平洋多圈层动力过程”重大研究计划,学术秘书;
9. 近年来担任《海洋地质与第四纪地质》、《热带海洋学报》、《海洋地质前沿》、《Geosystem and Geoenviroment》、《Discovery Minerals》等核心地学刊物编委,以及《Acta Oceanologica Sinica》、《海洋学报》期刊青年编委。
航次经历(Sea-going experience):
2010、2014、2022年:作为火成岩石学科学家,分别参加国际大洋发现/钻探计划航次(IODP Exp. 329、349和393航次);
2019-2021年:主导设计执行了国家基金委首个重大科学问题引导的共享航次项目:“西太平洋多圈层相互作用板块俯冲起始机制科学考察”(No. NORC2020-581)。
代表性研究论文(Publications):
通讯作者(*)
1 Zhang, G.L.(*), Chen, L. H.(*), Jackson, M. G., Hofmann, A. W. (2017). Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 10(3), 229-235.
2 Zhang, G.L.(*), Yao, J., Xu, F., Wu, T., Li, C. F., Wang, S., 2023. Origin of the Mussau Trench in the Western Pacific: Geochemical and mineralogical constraints from basalts and serpentinized peridotites. Chemical Geology, 642, 121798.
3 Zhang, G.L.(*), Wang, S., Zhang, J., et al., 2020. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume. Geochimica et Cosmochimica Acta. 290: 391-407.
4 Zhang, G.L.,(*), Luo, Q., Zhao, J., Jackson, M.G., Guo, L.S., Zhong, L.F., 2018. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Sciences Letters. 489: 145–155.
5 Chen, W., Keshav, S., Peng, W., Zhang, G.L.(*), 2023. Coupled cycling of carbon and water in the form of hydrous carbonatitic liquids in the subarc region. Journal of Geophysical Research: Solid Earth, 128(10), e2023JB026681.
6 Zhang, G.L.(*), Zhang, J., Dalton, H., Phillips, D. (2022). Geochemical and chronological constraints on the origin and mantle source of Early Cretaceous arc volcanism on the Gagua Ridge in western Pacific. Geochemistry Geophysics Geosystems, 23(9), e2022GC010424.
7 Chen, W., Zhang, G.L. (*), Keshav, S., Li, Y., 2023. Pervasive hydrous carbonatitic liquids mediate transfer of carbon from the slab to the subarc mantle. Communications Earth & Environment, 4(1), 73.
8 Zhang, Ji., Zhang, G.L.(*), Wu, Jonny., 2023. Geochemical and geochronological constraints on the tectonic and magmatic evolution of the southwestern Mariana subduction zone. Deep Sea Research Part I: Oceanographic Research Papers, 197, 104039.
9 Yao, J., Zhang, G.L, (*), Zhang, J., et al., 2023. Petrological and geochemical constraints of mantle peridotites on the magma-starved Yap Arc formed by ultra-slow subduction. Contributions to Mineralogy and Petrology, 178(11), 74.
10 Liu, H., Xue, Y.Y., Sun, H., Gu, H. O., Tong, F., Yao, J., ... & Zhang, G.L., (*), 2024. Lithium isotopic composition of low-temperature altered oceanic crust and its implications for Li cycling. Chemical Geology, 656, 122089.
11 Chen, W., Zhang, G.L.(*), Eiichi, T., Li, L., 2023. Flux melting of subducting carbonated sediments: An experimental study. Geosystems and Geoenvironment, 2(4), 100218.
12 Xu, F., Zhang, G.L.(*), Yan, W., Zhang, J., Yao, J., 2022. Subduction of the paleo-Pacific plate recorded by arc volcanism in the South China Sea margin. Gondwana Research, 110, 58-72.
13 Zhang, G.L.(*), Wang, S., Huang, S., Zhan, M., Yao, J., 2022. CO2‐Rich Rejuvenated Stage Lavas on Hawaiian Islands. Geochemistry Geophysics Geosystems, 23(9), e2022GC010525.
14 Yao, J., Huang, J., Zhang, G.L.,(*), 2022. Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauai, Hawaii. Chemical Geology, 120967.
15 Wang, S., Zhang, G.L.,(*), 2022. Geochemical constraints on source nature and recycled oceanic crust in the mantle of the Celebes Sea. Lithos, 418, 106685.
16 Shu, Y., Zhang, G.L., (*), Tian, L.L., et al., 2022. Constraints of barium isotopes on recycling of ancient oceanic crust in the mantle of the South China Sea. Journal of Volcanology and Geothermal Research, 429, 107608.
17 Wang, S., Zhang, G.L., (*), 2022. Geochemical constraints on mantle source nature and recycling of subducted sediments in the Sulu Sea. Geosystem and Geoenvironment, 1(1).
18 张国良(*), 2022. 卡洛琳海山链成因及验证地幔柱成因假说的大洋钻探设想. 海洋地质与第四纪地质. 42(5): 1-6.
19 Chen, W., Zhang, G.L., (*), Ruan, M., Wang, S., Xiong, X., 2021. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation. Journal of Geophysical Research: Solid Earth, 126, e2020JB020708.
20 Yuan X.Y., Mayanovic R., Zhang G.L., 2021. Phase transitions among CaCO3 crystal structures under hydrous and anhydrous conditions: Implications for the structural transformation of CaCO3 during subduction processes. American Mineralogist. 2021, https://doi.org/10.2138/am-2021-7575.
21 Zhong, Y., Zhang, G.L(*), Zhong, L.-F., et al., 2021. Post-spreading volcanism triggered by CO2 along the South China Sea fossil spreading axis. Lithos. 404-405, 106478.
22 Zhong, Y., Zhang, G.L(*)., Jin, Q.Z., et al., 2021. Sub-basin scale inhomogeneity of mantle in the South China Sea revealed by magnesium isotopes. Science Bulletin, 66: 740-748.
23 Zhong, Y., Zhang, G.L.,(*), Lv, W.-X., et al., 2021. Iron isotope constraints on the lithological heterogeneity of the upper mantle in the South China Sea. Journal of Asian Earth Sciences, 220: 104934. Doi: 10.1016/j.jseaes.2021.104934.
24 Yao, J., Zhang, G.L.,(*), Wang, S. and Zhao, J., 2021. Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry. Lithos, 398-399, 106249. Doi: 10.1016/j.lithos.2021.106249.
25 Zhan, M., Zhang, G.L., (*), 2021. Origin of high-Mg arc volcanism and fate of subducted sedimentary carbonates in the western Pacific: Evidence from partial melting experiments on mixed sediment and peridotite. Geological Journal, 57(1), 425-439.
26 Zhao, Z.H., Zhang, G.L., (*), Wang, S. and Zhao, J.X., 2021. Origin of arc-like intraplate volcanism by melting of lithospheric mantle pyroxenite of the South China continental margin. Lithos, 396-397: 106236.
27 Zhang G.L.(*), Zhang, J., Wang, S., Zhao, J.X., 2020. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, 540: 119566. Doi.org/10.1016/ j.chemgeo.2020.119566.
28 Zhang, J., Zhang G.L., (*)., 2020. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench. Lithos, 370-371: 105616. Doi: 10.1016/j.lithos.2020.105616.
29 Xun Wei, Zhang G.L., Castillo, P.R.,, Shi X.F., Yan Q.S., Guan, YL., 2020. New geochemical and Sr-Nd-Pb isotope evidence for FOZO and Azores plume components in the sources of DSDP Holes 559 and 561 MORBs. Chemical Geology, 557: 119858.
30 Liu, Y., Zhang, G.L.,(*), Zhang, J. and Wang, S., 2020. Geochemical constraints on CO2-rich mantle source for the Kocebu Seamount, Magellan Seamount chain in the western Pacific. Journal of Oceanology and Limnology, 38(4): 1201-1214.
31 张国良(*),战明君, 2019. 板块俯冲和岩浆过程中碳循环及深部碳储库. 海洋地质与第四纪地质, 39(5), 36-45.
32 Zhang, G.L. (*), Sun, W.D., Seward, G., 2018. Mantle source and magmatic evolution of the dying spreading ridge in the South China Sea. Geochemistry Geophysics Geosystems, 19 (11), 4385–4399.
33 Luo Q., Zhang, G.L.(*), 2018. Control of subduction rate on Tonga-Kermadec arc magmatism. Journal of Oceanology and Limnology. 36(3), 687-699.
34 Zhang, G.L.(*), Li, C., 2016. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Scientific Reports, 6, 37561.
35 Zhang, G.L. (*), 2016. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. Acta Oceanologica Sinica, 35(4), 19.
36 Zhang, G.L., (*), Smith_Duque C., 2014. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific. Geochemistry Geophysics Geosystems, Doi: 10.1002/2013GC005141.
37 Zhang, G.L.,(*), Smith_Duque C, Li H, Zarikian C, D’Hondt S, Inagaki F., 2012. Geochemistry of basalts from IODP site U1365: Implications for magmatism and mantle source signatures of mid-Cretaceous Osbourn Trough. Lithos, 144-145: 73–87.
38 Zhang, G.L.,(*), Chen, L.H., Li, S.Z., 2013. Mantle Dynamics and Generation of a Geochemical Mantle Boundary along the East Pacific Rise-Pacific/Antarctic ridge. Earth and Planetary Science Letters, 383, 153–163.
39 Zhang, G.L., (*), Comparative Study of Magmatism in East Pacific Rise Versus Nearby Seamounts: Constraints on Magma Supply and Thermal Structure Beneath Mid-ocean Ridge. Acta Geologica Sinica, 2011, 85(6): 1286-1298.
40 Zhang, G.L.,(*), Zong, C.L., Yin, X.B, Li, H., 2012. Geochemical constraints on a mixed pyroxenite-peridotite source for the East Pacific Rise basalts. Chemical Geology, 330-331: 176–187.
41 Zhang G L, Zeng Z G. Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from global U-series isotopes, major and rare earth elements. Science in China Series D-Earth Science. 2010, 53(12): 1486-1494.
42 Zhang, G.L., Jiang S Q, Ouyang H G, et al. 2010. Magma mixing in upper mantle: evidence from high Mg# olivine hosted melt inclusions in MORBs near East Pacific Rise 13°N. Chinese Science Bulletin. 55: 1643.
43 Zhang, G.L., Zeng Z.G., Beier C., Yin X B, Turner S., 2010. Generation and evolution of magma beneath the East Pacific Rise: Constraints from U-series disequilibrium and plagioclase-hosted melt inclusions. Journal of Volcanology and Geothermal Research, 193: 1-17.
44 Zhang G L, Zeng Z G, Yin X B, et al., 2009. Deep fractionation of clinopyroxene in the East Pacific Rise 13°N: Evidence from high MgO MORB and melt inclusions. Acta Geologica Sinica, 83(2): 266-277.
45 Zhang, G.L., Zeng Z G, Yin X B, et al., 2008. Periodical Mixing of MORB Magmas near East Pacific Rise 13°N: Evidence from Modeling and Zoned Plagioclase Phenocrysts. Science in China Series D-Earth Science, 51 (12): 1786.